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The integration of manned and unmanned aircraft can help improve wildfire response. Wildfire containment

failures occur when the resources available to first responders, who execute the initial stages of wildfire management

referred to as the initial attack, are ineffective or insufficient. Initial attack surveillance and suppressionmodels have

linked action spaces and objectives,making their optimization computationally challenging. The initial attackmaybe

formulated as a multi-agent partially observable Markov decision process (MPOMDP). We divide the initial attack

MPOMDP into surveillance and suppression processes with their respective planners operating on different, but

constant, time scales. A hierarchical framework iterates between surveillance and suppression planners while also

providing collision avoidance. This framework is exemplified by a set of multirotor unmanned aircraft surveying

an initial attack fire while a manned helicopter suppresses the fire with a water bucket. Wildfire-specific solver

extensions are formulated to reduce the otherwise vast action spaces. The hierarchical framework outperforms

firefighting techniques and amyopic baseline by up to 242%formoderatewildfires and 60% for rapidwildfireswhen

simulated in abstracted andactual case studies.Wealso validate the early dispatching of additional suppression assets

using regression models to ensure wildfire containment within thresholds established by wildfire agencies.

Nomenclature

AOA = manned aircraft axis of advance
a∕A = suppression action/set of suppression actions
B�x� = whether x is on fire in belief map B
DR = drop type
Dm = distance between unmanned aircraft and

manned aircraft below which Pm is incurred
Du = distance between unmanned aircraft below

which Pu is incurred
D�x� = instantaneous destruction by wildfire on x in

belief map B with respect to R�x�
e∕E = surveillance action/ set of surveillance actions
FT , PT = set of x fully suppressed at T and set of x

partially suppressed at T
F�x� = fuel remaining in x
IAO = initial attack fire origin
k = function of distance betweenwildfire and sup-

pression source and manned aircraft cruising
speeds

Pi = penalty for distance between unmanned air-
craft and IAO

PM = suppression penalty for global resource
destruction minimization model

Pm = penalty for unmanned aircraft proximity to
manned aircraft

Pu = penalty for unmanned aircraft proximity to
one another

P�x� = probability that x ignites in t
p�x; x 0� = probability that x 0 ignites x at t� 1
R = historical wildfire ring array
Ro = surveillance reward for belief map updates

RM = suppression reward for localized resource
destruction minimization model

R�x� = resources on x at time t is equal to 0
S = surveillance state composed of �Xu1 ; Yu1 ;

Zu1 ; Xu2 ; Yu2 ; Zu2�
T, dT = time step such that T is equal to 1 denotes the

first act of wildfire suppression, and duration
of T equal to k � dt

t, dt = time step such that t is equal to 0 is the inci-
dence of the wildfire, duration of t

U�x� = uncertainty regarding state of x in beliefmapB
Ve = set of x surveyed given action e
W�x� = whether x is on fire in the actual wildfire map

W
�Xm; Ym� = location in x, y of water drop
�Xu1 ; Yu1 ; Zu1 � = location in x, y, z of first unmanned aircraftU1

�Xu2 ; Yu2 ; Zu2 � = location in x, y, z of second unmanned aircraft
U2

x = wildfire cell
α = expended unit of fuel in cell x in t
β�x� = fuel reduced in x due to suppressive activities

at T
γF, γP = fuel reduced for a fully suppressed cell and

fuel reduced for a partially suppressed cell
δ�x� = probability that x is suppressed in T
H = suppression state composed of (Xm; Ym;DR)
2jPT j = all outcomes of the partially suppressed set

(218)

I. Introduction

E ACH year since 2000, an average of 70,600 wildfires have
burned through a cumulative 7 million acres, resulting in tens

of billions of dollars in damages and thousands of lives lost.Wildfires
in 2020 alone were responsible for more than 17,000 destroyed
structures and 3500 fatalities [1]. The initial attack occurs when the
first set of dispatched assets responds to an incipient wildfire [2].
Initial attack effectiveness significantly influences the outcome of a
wildfire’s eventual containment, placing a notable burden on the part
of first responders [3]. The California Department of Forestry and
Fire Protection (CALFIRE) and others define initial attack response
success as maintaining 95% of wildfires under 10 acres [4]. The
integration of manned and unmanned aircraft as part of an initial
attack, as shown in Fig. 1, is introduced to improve wildfire visibility
and minimize initial attack fire damage while further serving to

Received 17 September 2023; accepted for publication 3 May 2024;
published online 8 July 2024. Copyright © 2024 by the American Institute
of Aeronautics and Astronautics, Inc. All rights reserved. All requests for
copying and permission to reprint should be submitted to CCC at www.
copyright.com; employ the eISSN 2327-3097 to initiate your request. See
also AIAA Rights and Permissions www.aiaa.org/randp.

*M.S. Student, Aeronautics & Astronautics Department. Student Member
AIAA.

†Visiting Scholar, Aeronautics & Astronautics Department. Member
AIAA.

‡Associate Professor, Aeronautics & Astronautics Department. Associate
Fellow AIAA.

790

JOURNAL OF AEROSPACE INFORMATION SYSTEMS

Vol. 21, No. 10, October 2024

D
ow

nl
oa

de
d 

by
 S

ta
nf

or
d 

U
ni

ve
rs

ity
 o

n 
O

ct
ob

er
 3

0,
 2

02
4 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/1

.I
01

13
68

 

https://orcid.org/0009-0003-9087-814X
https://doi.org/10.2514/1.I011368
www.copyright.com
www.copyright.com
www.aiaa.org/randp
http://crossmark.crossref.org/dialog/?doi=10.2514%2F1.I011368&domain=pdf&date_stamp=2024-07-09


ensure fire containment to 10 acres through the early requisition of
additional suppression assets.
Although there exists ample literature on the optimizedmaneuver of

distributedunmanned aircraft to conduct tacticalwildfiremanagement,
there is less focus on hierarchical coordination of surveillance and
suppression operations and even less research integrating bothmanned
andunmanned aircraft. Toour knowledge, this paper is the first todo all
three: optimize initial attack surveillance and suppression activities
using a hierarchical framework of asynchronous planners to support
a human-autonomous aircraft team. Human-autonomous teaming
involves manned and unmanned agents collaborating to optimize
mission execution [5]. Teaming in aviation applications frees flight
crews to focus on complex mission-essential tasks, such as wildfire
suppression, while allowing critical but routine secondary tasks, such
as wildfire surveillance, to be automated [6]. Despite the opportunity
presented by unmanned aircraft, manned aircraft are expected to play a
critical role in wildfire response in the foreseeable future. CALFIRE,
the premier firefighting aviation program in the world with more
firefighting aircraft than any other, continues to rely almost exclusively
on manned aircraft for surveillance and suppression [7]. Integrating
low- and medium-altitude unmanned aircraft into existing manned
fleets provides immediately beneficial and realistic policies that may
enhancewildfire control efforts [8]. However, special attentionmust be
paid to industry-standard aviation tactics, techniques, and procedures,
and airspace models, to ensure collision avoidance [9].
Multi-agent problems with asynchronous actions and high-

dimensional state spaces can be made tractable by using a hierarchical
approach to planning [10]. Avaluable characteristic of heterogeneous
multi-agent models is that action abstraction may be held constant
by agent type. In our wildfire scenario, manned aircraft are provided
optimal suppression locations but not guided to them. The process by
which manned aircraft arrive at those suppression locations, through
underlying primitive actions, is based on aerial firefighting standard
operating procedures. Unmanned aircraft are explicitly guided to
optimal surveillance locations through primitive actions that also
satisfy collision avoidance requirements. A single manned aircraft
action may occur over the course of multiple unmanned aircraft
actions, resulting in an asynchronous action space. All aircraft share
a single belief state and possess each other’s location. We decompose
the initial attack multi-agent partially observable Markov decision
process (MPOMDP) into separate surveillance and suppression parti-
ally observable Markov decision processes (POMDPs) operating on
different time scales with distinct but related reward functions. The
POMDPs are simplified into Markov decision processes (MDPs)
using shared belief and uncertaintymaps. TheMDPs are subsequently
coupled in a manner exploiting the known structure of an initial attack
and respecting collision avoidance requirements. This frameworkmay
be adapted to optimize other aerospace teaming applications related to
attack, search and rescue, and medical evacuation operations.
This paper’s contributions include the following: 1) an adaptable,

hierarchical framework for the manned and unmanned multi-agent,
multi-objective, partially observable initial attack problem featuring a
high-dimensional state and action space; 2) several Monte Carlo tree
search (MCTS) extensions informed bywildfire domain knowledge to

include three suppression action space restrictionmechanisms (ASRs),
surveillance and suppression reward models, and an internal wildfire
propagation model; 3) simulations demonstrating the efficacy of (1)
and (2) given various wind conditions, elevation profiles, and resource
topologies, and compared against firefighting techniques and amyopic
baseline; and (4) a method for the early dispatching of additional wild-
fire suppression assets to meet the 10-acre containment standard
established byCALFIREand otherwildfire agencies. This framework,
solver extensions, and methods validate the use of MDPs to optimize
initial attack operations through the provision of collision avoidance,
increased flexibility in suppression, and real-time wildfire insights.

II. Related Work

This section reviews related research that applies distributed air-
craft coordination frameworks, human-autonomous teamingmodels,
hierarchical structures for multi-agent systems, or some combination
of the three, to the wildfire surveillance and/or suppression problem.
Further considered is the use of reinforcement learning or probabi-
listic search techniques to make informed decisions. We especially
highlight the technical contributions of Seraj et al., which exist at the
confluence of distributed aircraft coordination and hierarchical struc-
tures for multi-agent systems, for the joint wildfire surveillance and
suppression problem [11]. Similarities and differenceswith our paper
are discussed.

A. Distributed Aircraft Coordination Frameworks

The academic literature provides several examples of distributed
unmanned aircraft coordination frameworks that support either wild-
fire surveillance or suppression (but rarely both). Julian and Kochen-
derfer demonstrate how deep reinforcement learning may be used
to coordinate multiple autonomous fixed-wing aircraft to accurately
track wildfire front expansion [12]. Pham et al. similarly introduce
a distributed framework for controlling a set of quadcopters to
chart a wildfire’s progression while avoiding in-flight collisions
[13]. Ghamry and Zhang divide the wildfire surveillance problem
into three stages: search, confirmation, and observation. In the search
stage, the unmanned aircraft team uses a leader-follower approach
and moves in geometric formation to the wildfire. On arrival, the
unmanned aircraft distribute in accordancewith a generated elliptical
fire front perimeter [14]. Griffith et al. compare the use ofMCTS and
mathematical optimization (MO) as applied to the allocation of
wildfire suppression teams. MOmodels the MDP as a mixed-integer
linear optimization problem, then applies a commercial solver to
determine feasible solutions [15].

B. Human-Autonomous Teaming Models

At its simplest, the relationship between man and machine in a
systemmay be categorized as human-in-the-loop, human-on-the-loop,
or human-out-of-the-loop. Human-in-the-loop systems require human
approval before action by the unmanned agent. Human-on-the-loop
systems involve the human receiving updates from the unmanned
agent, and the human in turn providing guidance to the unmanned
agent. Human-out-of-the-loop systems have an unmanned agent that
acts independently, albeit with initial or occasional guidance from the
human [16]. There are surprisingly few research efforts that integrate
man and machine in support wildfire management. The academic
literature has largely prioritized fully autonomous teams conducting
surveillance and suppression operations. There are exceptions. Bjurl-
ing et al. consider human-in-the-loop operator control over a swarm of
unmanned wildfire surveillance aircraft [17]. Human-autonomous
teaming may be defined as manned and unmanned agents working
interdependently to accomplish a common goal [5]. Symbiotic auto-
nomy is a form of teaming that accomplishes complex tasks by
distributing subtasks and sharing information across multiple agents
and agent groups [18]. In this framework, human and autonomous
agents may act asynchronously to execute individual subtasks that
enhance or inform each other’s efforts [19], and may be supported by
a “smart environment,” which provides shared understanding across
the team and thereby improves performance. Seraj and Gombolay

Fig. 1 Manned and unmanned aircraft coordinating to survey and
suppress an initial attack fire.
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introduce a distributed control framework for a team of unmanned
aircraft conducting human-centered surveillance of wildfires and
transmitting high-fidelity fire front observations to on-ground fire-
fighters [20].

C. Hierarchical Structures for Multi-Agent Systems

A hierarchical representation of tasks can enable decision-making
across different levels of temporal abstraction for complex, multi-
agent systems. Macro-actions are temporally extended actions that
can be incorporated into multi-agent decision problems to overcome
high-dimension state spaces. The use of macro-actions can result in
cooperative agents acting asynchronously. Menda et al. introduce an
algorithm that modifies policy gradient estimators for macro-actions,
permitting policy optimization in models where agents act asynchro-
nously. They successfully apply this algorithm to the cooperative
multi-agent wildfire suppression problem [21]. Hierarchical repre-
sentation is also a framework on which to scale reinforcement learn-
ing to large domains [22]. The category of hierarchical reinforcement
learning (HRL) algorithms is large and diverse. With the advent of
deep reinforcement learning, HRL has branched into options [23]
and subgoal [24] methods. Similarly, there exist several state-of-the-
art multi-agent deep reinforcement learning (MARL) algorithms,
including MADDPG [25], COMA [26], and QMIX [27]. An in-
depth discussion of HRL and MARL algorithms is beyond the
scope of this paper. We do, however, highlight the work of Xu et al.
in developing the Hierarchical Value Decomposition (HAVEN)
framework for solving decentralized partially observable Markov
decision process (Dec-POMDP) problems, one of the few algorithms
straddling both HRL and MARL [28].
Seraj et al. apply a hierarchical framework of decision-making

modules to a perception-action composite team of heterogeneous
aircraft, both surveying and suppressing a wildfire [11]. They model
the environment as a multi-agent partially observable semi-Markov
decision process (MAPOSMDP). A high-level module assigns spe-
cialized surveillance tasks to a set of perception UAVs, while a low-
level module coordinates a control and planning framework through
which all UAVs execute their assigned tasks. A novel reinforcement
learning algorithm is proposed that employs a variant of the state-
action-reward-state-action (SARSA) algorithm tailored to multi-
agent problems. This hierarchical design lends itself to “prolific
cooperation between perception and action agents.” We instead
introduce a hierarchical framework that encourages cooperation
between perception agents (unmanned surveillance aircraft), which
in turn unilaterally support action agents (manned suppression air-
craft). Thus, the perception agents are a complement to the action
agents. Action agents are modeled as non-cooperative interacting
entities [29], and although provided suppression guidance, are other-
wise uncontrolled. Ultimately, we seek to minimize the extent to
which unmanned aircraft disrupt manned aircraft operations. We
divide the initial attack MPOMDP formulation into surveillance
and suppression decision processes operating on different time scales
and share information between their planners to ensure collision
avoidance and fused information collection. Each subproblem is
resolved using MCTS with several domain-specific extensions. We
emphasize the integration of manned aircraft conducting suppression
operations and demonstrate how certain tactics, techniques, and
procedures employed by those aircraft can be supported, or at least
avoided, by an unmanned aircraft network.

III. Problem Statement

We begin by formulating the initial attack problem as an
MPOMDP. The MPOMDP is a generalization of the MDP in which
multiple agents, each unable to fully observe the underlying world
state, collaborate and communicate freely toward one or more
shared objectives [30]. The initial attack MPOMDP is represented
byM � hα;S;A; P;O;Ω; γ; Ri, where α is the number of agents, S
is the state space,A is the action space,P is the transition model,O is
the observation function,Ω is the observation space, γ is the discount
factor, andR is the reward function [29,31]. TailoringM to the initial
attack, take the number of agents to equal the number of participating

unmanned and manned aircraft, or α � αu � αm. Each possible state
st ∈ S at time t includes 1) unmanned aircraft i andmanned aircraft j
positions and 2) the wildfire state, such that st � �pt

i; p
t
j;W

t�. Action
space A is the set of all possible surveillance actions for unmanned
aircraft and all possible suppression actions for manned aircraft,
giving A � �Ai × ::: ×Aαu� × �Aj × ::: ×Aαm�). The transition

model P assigns the probability of transitioning from existing state

st−1 by action a to state st, with s∈SP�st−1; a; st� � 1. The dis-
count factor γ is a hyperparameter that balances short- and long-term
rewards. A larger γ prioritizes long-term rewards, whereas a smaller
γ prioritizes short-term rewards. Observation function O gives a
probability distribution over all possible observations ω after taking
action a, resulting in state s. Observation space Ω includes the set
of all possible partial wildfire observations by unmanned aircraft i
at time t, where ωt

i � �Wt
i�, ωt� ∪αu

i�1 ωt
i, and ωt ∈ Ω. Each

unmanned aircraft takes its own surveillance action for which it
receives an individual observation. Observations are fused across
all unmanned aircraft to attain shared observation ωt. The shared
belief is a probability distribution over S. We update the belief bt

that the current state is st, for each st, using

bt�st� � βO�ωt; st; at−1�
st−1∈S

bt−1�st−1�P�st; at; st−1� (1)

where bt−1 is the initial belief, ωt is the new shared observation, and
β is a normalizing constant [32]. Reward function R returns the
reward received when taking action a from state s. Rewards are
jointly considered across α aircraft.
The heterogeneity of the agent population suggests that the larger

MPOMDP may be decomposed into smaller decision processes
tailored to particular subtasks. We partition the initial attack agents
into unmanned and manned agent groups, with each group possess-
ing its own action space and a unique level of temporal abstraction.
The initial attack itself delineates agent group responsibilities and
defines agent group relationships. This permits the overarching
MPOMDP to be divided into separable surveillance and suppression
POMDPs with differing but linked action spaces and reward models.
The number of wildfire states is intractable at 210;000, and a proxy in
the form of a single modifiable belief map is introduced. Thewildfire
belief map size matches that of the actual wildfire state and is updated
in accordancewith unmanned aircraft observations. Surveillance and
suppression POMDPs are further simplified into MDPs by assuming
the developed wildfire belief map is the actual wildfire state, which
we find incurs an acceptable level of error. The resulting surveillance
and suppression MDPs are building blocks in a hierarchical frame-
work, and their associated planners repeat at a frequency specific to
the wildfire environment. MDPs are P-Complete and finite-horizon
POMDP approximations are PSPACE-complete, and the complexity
of our approach is similar. This section introduces the stochastic
wildfire propagation model, manned and unmanned aircraft dynam-
ics, and state space formulations.

A. Wildfire Propagation

Thewildfire propagation problem has been the target of significant
research activity, and the resulting models feature varying levels of
complexity. We use a stochastic propagation model inspired by that
of Bertsimas et al. [33], formulated to simulate the efficacy of the
proposed hierarchical surveillance and suppression framework. The
propagation model is modified to include the effects of aerial sup-
pression, wind direction and strength, and terrain elevation [34].
Wind and terrain are critical environmental factors affecting not only
wildfire spread but unmanned and manned aircraft activity [35]. In
keepingwith CALFIRE and other wildfire agencies, initial attack fire
containment is defined as wildfire control within 2 h or spread not
greater than 10 acres. The wildfire model therefore consists of a
roughly 10 acre square discretized into a 100 × 100 grid of 2 × 2
meter cells. Each cell x features aBooleanvalue representingwhether
x is actually on fire,W�x�, a Boolean value representing whether x is
believed to be on fire, B�x�, and an integer value representing the
amount of fuel remaining in x, F�x�. Fuel is defined as the amount of
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combustible material in a cell that contributes to fire behavior and

effects [36].
The duration of surveillance time step t is dt and is held constant at

1minute. At t, each burning cell can 1) continue burning and expend a
unit of fuel α, 2) stop burning by virtue of having expended all

available fuel such that Ft�x� � 0, or 3) be partially or fully sup-

pressed with probability δ�x�. Similarly, each nonburning cell can

ignite with probability P�x�, which is a function of the number of

neighboring burning cells, remaining fuel, wind strength and direc-

tion, and terrain elevation. More specifically, the probability that

neighboring cell x 0 ignites cell x at t� 1 is p�x; x 0�.The duration

of suppression time step T is dT , equal to kdt, where k is a function of
both the cruising speed of the suppression asset with andwithout load

and the distance from the initial attack fire to a water replenishing

source. There are five suppression actions, each with a different

distribution of partially and fully suppressed wildfire grid cells.

Notably, suppression affects not only the probability of ignition,

but reduces fuel remaining as well [37]. The set of cells fully sup-

pressed at T with zero probability of ignition is FT , where γF is fuel

reduced when fully suppressed. The set of cells partially suppressed

at T with probability of ignition compounded by Ppartial is PT , where

γP is fuel reduced for a partially suppressed cell. The individual

success probabilities of multiple suppressive actions on a single cell

x are independent. The resulting wildfire propagation equations are

therefore

Ft�1�x� �
max�0; Ft�x� − α − β�x�� if Bt�x�
max�0; Ft�x� − β�x�� otherwise

(2)

β�x� �
γF if tmod k � 0 and x ∈ FT

γP if tmod k � 0 and x ∈ PT

0 otherwise

(3)

P�x� �
0 Ft�x� � 0

δ�x� ifBt�x�andFt�x�> 0

δ�x��1−
x 0
�1−p�x;x 0�Bt�x 0��� if¬Bt�x�andFt�x�> 0

(4)

δ�x� �
0 if t mod k � 0 and x ∈ FT

Ppartial if t mod k � 0 and x ∈ PT

1 otherwise

(5)

Wind and elevation kernels may be convolved with a grid of
p�x; x 0� to help propagate the wildfire in the direction of the wind
or toward up-sloping terrain. A modifiable resource grid is included
in the initial attack environment to associate value to areas of impor-
tance, such as housing communities in the midst of a forest. Figure 2
depicts inputs to the initial attack fire propagation model, and other
features of the wildfire environment. The initial attack model begins
with an assignment of fuel quantity and terrain elevation to each grid
cell. As shown in Fig. 3, fire is seeded at t � 0 min at a handful of
cells in the middle of the wildfire grid and allowed to propagate at
each consecutive t. The simulation terminates when the initial attack
becomes an escaped fire and additional suppression assets are intro-
duced as a matter of policy; this occurs when t � 120 min or when
thewildfire expands beyond thewildfire grid. The unmanned aircraft
arrives 5 minutes after the initial attack fire begins, and the manned
aircraft arrives 10minutes after that. These estimatesmay be adjusted
in the model depending on the proximity of assets to the wildfire.

B. Unmanned Aircraft Dynamics

Two multirotor unmanned aircraft with identical characteristics are
introduced to survey the initial attack fire. The unmanned aircraft
operate in a 10 × 10 × 7 airspace gridworld consisting of 20 × 20 ×
20meter grid cells and arrive on station at t � 5 min. The kinematics
of eachmultirotor unmanned aircraft are abstracted in time, and simple
gridworld commands, essentially primitive actions, translate the drone
accordingly.More specifically, each dronemaybe translated up, down,
left, right, ascend, descend, or hover in place. Translation may occur
once per time step t, and observations are collected en route to the next
grid cell. Each drone is limited to the confines of the airspace grid-
world, and the action space is pruned at the edges accordingly.
Although each unmanned aircraft acts independently, the surveillance
MPOMDP is simplified into a POMDP by having the controller take
joint actions; by doing so, the surveillance action space increases from
7 to 49. A multirotor design was selected over a fixed-wing design to
enable hovering and because multirotor aircraft typically possess the
kind of high-quality camera control needed to survey a wildfire.
Each unmanned aircraft must balance coverage with capture. The

more elevated the unmanned aircraft, the wider its field of view, but

T1

T2

Initial Attack 
Fire Begins

Unmanned Aircraft 
Arrive on Station

T3
Manned Aircraft 
Arrives on Station

setunim0 setunim5 setunim51 120 minutes

T4
Transformation into 

Escaped Fire

Suppression Calculation

Suppression Execution

Surveillence Calculation + Execution

Fig. 3 The initial attack time line depicts the arrival time for unmanned and manned aircraft, the escaped fire transformation, and the calculation and
execution of surveillance and suppression actions.

0
0

3
2

1

Wildfire

Fuel

Agents

Elevation

Resources

Winds

Fig. 2 The initial attack fire propagates based on fuel, winds, and
terrain. Included in the initial attack environment are aerial agents
surveying and suppressing the wildfire and the resources that are subject
to destruction.
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the less resolution it has on the wildfire at a given location. Strategi-
cally, this results in a lower altitude selected when the fire is con-
densed and a higher altitude when the fire is dispersed. The problem
becomes more complicated with the addition of a second drone and
collision avoidance penalties. As will be demonstrated, the inclusion
of multiple unmanned aircraft that can actuate on two or more axes
results in unique emergent behaviors, including dispersion, loitering,
stacking, and circling. Each unmanned aircraft is penalized byPu if it
is within Du meters of another unmanned aircraft.

C. Manned Aircraft Dynamics

A rotary-wing manned aircraft, with characteristics similar to those
of an S-70 Firehawk helicopter, provides initial attack suppression
capabilities through a short-line 660-gallon water bucket. The manned
aircraft must fetch water from the nearest adequate water replenishing
source before each suppression action. The distance between thewater
replenishing source and the initial attack fire can vary considerably, but
is here assumed tobe10km.Suppression timestepT durationdT is tied
to the distance between the water replenishing source and initial attack
fire and cruise speed of the manned aircraft with and without load. For
example, an S-70 with an unloaded cruise speed of 140 KIAS and a
loaded cruise speed of 80 KIAS, with 10 km between the initial attack
fire and water replenishing source, can reasonably expect to perform a
drop once every 5 minutes (thus, dT and k � 5, where k is the number
of iterations that occur within T). Given an on-station arrival at
t � 15 min, the manned aircraft can therefore expect to perform 21
drops during the initial attack. These 21 water drops, in addition to
efforts of ground-based suppression assets, determinewhether an initial
attack fire is contained or instead evolves into an escaped wildfire.
Ground-based suppression activities are not considered in this paper.
Themanned aircraft in an initial attack operates in accordancewith

best practices, in response to environmental factors, and often, per the
guidance of a ground controller in the form of a fire truck, helitack
crew, battalion chief, or hand crew [38]. Manned aircraft operations
entail not only the placement of the water drop but also the type of
drop and aircraft axis of advance in light of winds, smoke, and other
aircraft operating in the immediate vicinity [39]. This paper does not
attempt to fully capture the decision-making of a pilot in command
of a firefighting aircraft but rather seeks to recognize the extent of
that decision-making and provide supplemental guidance while
ensuring supplemental assets (i.e., unmanned aircraft) do not restrict
the manned aircraft’s range of movement. Water may be dropped on
any cell in the 100 × 100wildfire grid. As shown in Fig. 4, there are

five standard drops, each categorized as either a point drop or line
drop; this results in a suppression action space of 50,000. The point
drop occurs when a suppressing helicopter slows to a near-hover
before dumping the contents of its water bucket. The line drop occurs
when a suppressing helicopter maintains forward airspeed before
dumping the contents of its water bucket. Point drops are condensed
in nature and typically used to suppress a condensed fire area,
whereas line drops distribute the spread of water or retardant and
are ideal for the placement of wet lines. Drop selection, bucket line
length, and bucket volume determine the on-ground suppression
profile [40]. This paper’s model structure may be easily adapted to
other aircraft and buckets of varying volumes and line lengths.
Simplifying assumptions include paralleling drop type and axis of

advance, early identification of drop placement and type, and gener-
alization of manned aircraft altitude and direction during the drop. The
200 m × 200 mwildfire grid is small relative to the operational area of
a manned aircraft, which may travel more than 10 km to reach a water
replenishing source. It becomes reasonable to assume the manned
aircraft’s axis of advance is linked to its drop selection; a north–south
line drop involves themanned aircraft traveling either north to south or
south to north through the wildfire grid, such that the axis of advance
includes the point of application. The axis of advance of a point drop is
less straightforward, given that the manned aircraft slows to a near-
hover; however, it is assumed that the axis of advance parallels the
vector extending from the water replenishing source to the point of
application of the initial attack fire, such that additionalmaneuvering is
not required and time is saved. Figure 4 also depicts the axis of advance
associated with each drop type. Each iteration of the surveillance
model is held at 1 minute, providing the unmanned aircraft 2 minutes
to determine the suppression location and axis of advance. The tem-
poral resolution may be increased to allow the determination of
manned aircraft maneuvering at a time nearer to suppression. Finally,
for collision avoidance purposes, the unmanned systems are penalized
byPm if they comewithinDm meters of the two-dimensional manned
aircraft axis of advance at any altitude. This ensures that unmanned
aircraft are penalized for proximity to themanned aircraft regardless of
bucket-line length, drop altitude, or axis of advance directionality.Both
Pm and Dm are larger than Pu and Du respectively, representing the
critical importance of ensuring the unmanned aircraft maintain sepa-
ration from themanned aircraft and the somewhat lesser importance of
ensuring the unmanned aircraft maintain separation from one another.
Given the partial observability of the initial attack fire, a shared belief

map B, matching the dimensions of the 100 × 100 grid wildfire, is

Line Drop (NE)Line Drop (NS)Point Drop Line Drop (NW) Line Drop (EW)

Full SuppressionPartial Suppression WildfirePoint of Application

Fig. 4 Five suppression action drop-types and their associated aircraft axis of advance. A line drop and point drop have fundamentally different on-
ground suppression characteristics.
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introduced and updated at regular intervals. The surveillance planner,
executed at each time step t, updates each wildfire cell in B that is
observed by either of the two unmanned aircraft to reflect the actual
wildfire state. The suppression planner, executed at each time step T,
may further update the belief and uncertainty maps at locations where
suppression is assured. Figure 5 depicts fuel and belief maps over the
course of an initial attack fire. The red and green circular markers
represent the unmanned aircraft locations in the two-dimensional
representation and the unmanned aircraft trajectory in the last five time
steps in the three-dimensional representation. The green square repre-
sents a high-value resource area. The ability of the unmanned aircraft to
accurately capture thewildfire state is degradedas thewildfire expands.

D. State Space Formulations

The surveillance POMDP is simplified into an MDP by assuming
a shared belief map B to be the actual wildfire state rather than

maintaining a probability distribution across 210;000 possible wildfire
states; this does incur nontrivial error but results in a notable reduc-
tion in computational complexity by detaching each instantiation of
the evolving wildfire gridworld from the state space. Instead, the
surveillance state space, which is explicitly defined, encompasses
state variables (Xu1 , Yu1 , Zu1 , Xu2 , Yu2 , Zu2 ). This results in a large,

butmanageable 490,000 states, equivalent to theCartesian product of
sets U1 and U2, each constituting all possible locations for an
unmanned aircraft in the airspace.
The suppression problem also assumes the shared belief map B to

be the actual wildfire state. Rather than an explicit formulation, the
suppression state space is developed by calling a generativemodel on
any number of state–action pairs (s0, a). The state variables for the
suppression MDP are (Xm, Ym, DR, 2jPT j). This generates a state
space with an upper bound of approximately 13 billion states, repre-
senting every outcome of each possible suppression action.

IV. Solution

A hierarchical planner derived from wildfire and teaming domain
knowledge, shown in Fig. 6 and outlined in Algorithm 1, is used to

split the larger surveillance-suppression MPOMDP into separate
surveillance and suppression POMDPs operating on different time
scales. A shared belief map is assumed for both models, further
simplifying each POMDP into an MDP. The shared belief map is
updated using the observed wildfire data and used to generate a
wildfire uncertainty map and in the internal wildfire propagation
model. The wildfire uncertainty map informs the surveillance
planner’s reward function. The surveillance planner recommends
a surveillance action that updates the observed wildfire data and
thus the belief map. The internal wildfire propagation model
informs the suppression planner’s rewards. The suppression plan-
ner recommends a suppression action, which affects the actual
wildfire state. We choose to apply MCTS, a simulation-based
search algorithm, to both surveillance and suppression planners.
The upper confidence bound for trees (UCT) algorithm selects
promising actions in the search trees [41]. Several MCTS exten-
sions are introduced to reduce the large surveillance and suppres-
sion action spaces. As shown in Algorithm 1, the execution of
a planner-recommended action does not always immediately fol-
low the planning process itself; this delay allows heterogeneous
planners to adjust the recommendation of future actions based
on the expected actions of another (e.g., in support of collision
avoidance).

Fuel Map
   Fire Location

(with Suppression)
)D3(noitacoLeriFpaMfeileB

t =
 9

0
 m

in
t =

 7
0
 m

in
t =

 5
0
 m

in
t =

 3
0
 m

in

Fig. 5 Fuel, belief, and actual wildfire maps in two and three dimensions as the initial attack fire propagates.

Algorithm 1: Hierarchical planner

Input: Initial wildfire belief B0, surveillance state S0, uncertainty map U0

Output: Updated Bk, Sk, Uk after k iterations, suppression action a

1: for i � 0; 1; : : : ; k − 2 do

2: e ← Surveillance Planner (Ui;Si)

3: Bi�1, U i�1, Si�1 ← survey(Bi;U i; e)

4: a ← Suppression Planner (Bk−1)

5: e ← Surveillance Planner (Uk−1, Sk−1, a)

6: Bk, Uk, Sk ← survey(Bk−1;Uk−1; e)

7: Bk ← suppress(Bk; a)
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A. MCTS Solver

The introduced hierarchical planner is solver-agnostic. That said,
the large state and action spaces coupled with a nonstationary envi-
ronment in the propagating wildfire encourages the use of an online
stochastic planning algorithm like MCTS. MCTS is also an anytime
algorithm, which means it can return a valid solution if interrupted
before runtime completion [42]. The set of possible actions is repre-
sented as edges, and the resulting states are represented as nodes in
the search tree. Each MCTS iteration follows four general steps:
selection, expansion, simulation, and propagation. MCTS selects
nodes and traverses the search tree using a predefined heuristic
informed by the problem domain. This heuristic results in an asym-
metric search where the most promising actions are prioritized. We
choose to apply the standard UCT algorithm to balance exploration
versus exploitation in the tree search policy and determine the value
of each node n, as follows:

UCB�n� � �u�n� � c
log�visits�n��
visits�n 0� (6)

such that �u�n� is the value of the state at n, c is an exploration con-
stant that adjusts the balance between exploration of new nodes and
exploitation of previously visited nodes, visits(n) is the visitation
count for n, and visits(n 0) is the visitation count for the parent node of
n, n 0. The search tree is then expanded by adding a child node to the
selected node. State value estimation occurs by simulating a play-out
from a node to the end of a predefined planning horizon. A random
policy is here applied to estimate the action value during search
tree roll-outs. The simulation results are then backpropagated up
the search tree, concluding a search iteration. It can be difficult to
accurately assess MCTS computational complexity given the many
subtasks involved, but in the general case, MCTS runtime and
memory complexity scale linearly with the number of search itera-
tions [43,44]. Figure 7 shows how MCTS may be applied to search
trees for unmanned aircraft surveying an initial attack wildfire.

Selection is depicted by the bold circles and involves traversing the

tree to a select depth using an algorithm like upper confidence bounds

applied to trees. The selected node is then expanded by adding a child

node, shown in gray. A simulation is performed from the child node

to a preordained depth or condition, shown in red. The simulation

results are associated with the child node and backpropagated up the

search tree. This repeats until a given condition is true, the com-

putation time-limit is met, or a ceiling on search iterations is reached.

Given that the state space is evolving in time, we use an internal

wildfire model to propagate the wildfire belief map between pro-
gressive search tree depths. States that exceed the boundaries of the

model, shown crossed out in red, are pruned from the search tree.

B. Surveillance Planning

There exist 49 possible surveillance actions at time t for a given
belief map, equivalent to the Cartesian product of the set of seven

actions for two unmanned aircraft. At depth of two, there are 2401

possible actions, and at depth three, there are 1.18 × 105. Given

210;000 wildfire states, developing an explicit policy using dynamic

programming is infeasible. Instead of an explicit policy formulation,

a sampling-based approach with a generative model is used. An

additional complication is reward uncertainty, given a stochastic

element in the selection process for observations following a selected

surveillance action. As each unmanned aircraft increases in altitude,

the resolution of the wildfire grid below decreases, and a sampling

process is used to balance observation coverage and capture.
Algorithm 2 outlines a process by which a surveillance action with

depth one is recommended; as will be later discussed, a probabilistic-

search formulation of this process is applied to enable search depths

of two and three. Uncertainty map U t, surveillance state St, and,

optionally, suppression action a are submitted to the surveillance

planner. A surveillance score map ~E is initialized. Each surveillance

action e in setE is applied to the current surveillance state St to attain

the next surveillance state St�1. The ranging function provides an

array of wildfire grid cells Ve, which are observed from the updated

A HIERARCHICAL FRAMEWORK

Low-Level Action: Aircraft Axis of Advance

Suppression Planner

Observed Wildfire Data

Wildfire Propagation Model

Surveillance Planner

Wildfire Uncertainty Map

Actual Wildfire

 Collision
Avoidance

High-Level Action: Drop Type and Location  

Dictated by: 
• Environmental Conditions
• Aviation Standard Operating Procedures
• Pilot Discretion

Low-Level Action: Surveillance Drone Locations

timestep t (duration dT) timestep T (duration dT= kdT)

Belief Map Suppression O
utcom

es
Su
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ei
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e 
O
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m
es

Fig. 6 A hierarchical framework for the initial attack using teaming involving linked surveillance and suppression planners.
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surveillance state position as a function of both location and altitude.

As mentioned, there is a stochastic element to the ranging function,

meaning that observations attained from a particular surveillance

position, and thus ensuing rewards, will differ slightly with each

simulation. The uncertainty in observation for each wildfire cell x in
set Ve, U�x�, is then summed to attain Roe , one of four components

of the total surveillance reward RU for a particular action e. This
uncertaintymodel thus provides a reward corresponding to the extent

to which observations reduce overall belief map uncertainty, regard-

less of the actual state of the wildfire or belief map. As shown in

Fig. 8, the uncertainty reward model maintains a 100 × 100 uncer-

tainty map in which each cell not observed in a particular time step

increases its uncertainty by an amount proportional to its proximity to

burning cells (in the belief map), and each cell observed resets its

uncertainty to zero. Cells on the outskirts of a wildfire grid with a

negligible likelihood of igniting change their uncertainty minimally,

while cells at the head of the fire change their uncertainty rapidly.

Observations of cells that have not been recently observed reward

more than cells that were more recently observed, regardless of

whether the cell changes state postobservation.
Reward RU is further composed of penalties Pu, Pm, and Pi.

Unmanned aircraft U1 and U2 are penalized for their proximity to

one another (Pu) and to the manned aircraft’s axis of advance (Pm).

The axis of advance and aircraft direction along it may be inferred

from environmental data such as winds, aviation and wildfire best

practices, and the suppression action a, or alternatively, they may be

explicitly passed to the surveillance planner. A small penalty (Pi),

proportional to the distance from each unmanned aircraft to the initial

attack fire origin IAO, is added to encourage unmanned aircraft to

approach the initial attack fire. Penalty Pi is quickly overtaken by

other rewards and penalties. The resulting total reward equation for

the unmanned aircraft follows, where τ1, τ2, τ3, and τ4 are tunable
parameters:

Ro � τ1
x∈Ve

U t�x� (7)

Pu � τ2 if kU1 −U2k ≤ Du

0 otherwise
(8)

t = 103 min t = 104 min t = 105 min t = 106 min

%
 C

er
ta

in
ty

Fig. 8 Wildfire uncertaintymap during initial attack fire propagation. Dark red areas suggest nearby fire activity but few recent observations. Grid cells
distant from the wildfire, such as at the map periphery, increase their percent uncertainty minimally.
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Fig. 7 Monte Carlo search trees depicted for two unmanned aircraft surveying an initial attack wildfire. Each iteration of Monte Carlo tree search has

four steps: selection, expansion, simulation, and backpropagation.

Algorithm 2: [Simplified] Surveillance planner (uncertainty
reward model)

Input: Uncertainty map Ut, surveillance state St, suppression action a
(optional)

Output: Surveillance action e

1: Initialize Surveillance action score map ~E ← ∅
2: for action ei ∈ E do

3: St�1 ← apply ei to St
4: Vei ← ranging(St�1)

5: Roei
← Σx∈Vei

U t�x�
6: RUei

← τ1 Roei
+ τ2 Pu�St�1� + τ3 Pm�St�1; a� + τ4 Pi�St�1�

7: ~E�ei� ← RUei

8: Recommended surveillance action e ← argmaxei
~E�ei�
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Pm �
τ3 if kU1 − AOAk ≤ Dm

τ3 else if kU2 − AOAk ≤ Dm

0 otherwise

(9)

Pi � τ4�kU1 − IAOk � kU2 − IAOk� (10)

RU � Ro − Pu − Pm − Pi (11)

The simplified approach in Algorithm 2 becomes computationally
intractable when considering depths greater than one, given the large
action space and reward uncertainty. The Algorithm 2 reward struc-
ture is maintained, and MCTS with UCT is applied to a generative
MDPmodel to search the action space efficiently. The wildfire belief
state Bt is passed to the MDP model to be adjusted and modified,
alongwith the uncertaintymapU t, with a progressive extension of the
search-tree’s depth. EachMCTS surveillance calculation is capped at
30 s of calculation time to allow each drone to proceed to its new
location and attain observations before the next iteration. Any action
that would take either a drone beyond gridworld boundaries or any
combination of actions that would take both drones into the same
grid cell is pruned. The computational complexity of a single MCTS
surveillance iteration increases with wildfire growth. For example,
given a 30 s restriction and a depth of three, MCTS surveillance
conducts roughly 800 iterations at t � 0 min , and only 60 iterations
at t � 120 min. Reducing the MCTS depth as the wildfire pro-
gresses ensures a roughly equivalent number of iterations at a depth
of one throughout the lifespan of the wildfire. A depth factor of
three is reduced to two, and then one, as the wildfire propagates, to
maintain a minimum of two runs for each possible action at a depth
of one.

C. Suppression Planning

The suppression model features 50,000 possible actions, encom-
passing five suppression actions centered on each of the 10,000
wildfire grid cells for a given belief map. The large action space

again prevents an exact policy formulation, and a generative method
is instead applied. Reward uncertainty remains a factor, as water
buckets fully suppress somewildfire cells but only partially suppress
others; the partially suppressed cells are selected via random sam-
pling. An understanding of wildfire dynamics allows for various
forms of ASR that minimize the overall action space by 99% or more
with minimal consequence. A generated and internally held wildfire
propagation modewith limited information, shown in Fig. 6, enables
the suppression planner to conduct customized roll-outs to optimize
action selection. Two reward models are here introduced: localized
and global resource destruction minimization. Global resource des-
truction minimization calculates the instantaneous destruction of
the full 100 × 100 grid after roll-out, whereas localized destruction
minimization calculates the instantaneous destruction of a smaller
grid centered on the location of the action taken after roll-out. In both
cases, the suppression aircraft is rewarded RM, or penalized PM,
proportional to the instantaneous destruction caused by the wildfire
following one or more roll-out periods in which the internal fire
propagationmodel with limited information propagates postsuppres-
sion. Instantaneous destruction is a function of the number of cells
burning and the value of the resources contained within those cells.
Rewards forminimized instantaneous resource destruction following
a roll-out period ensure the long-term impact of water lines can be
measured against the short-term impact of more immediate suppres-
sive activities.
Localized resource destruction minimization examines only the

area immediately surrounding the suppression activity for reward
considerations. Suppressive activities applied to different portions of
thewildfire cannot be directly compared due to the differingwindows
under consideration and must instead be compared against a non-
suppressed but equally propagated “reference grid,” as illustrated in
Fig. 9. Reward is then maximized when the difference between the
appropriately localized portions of the reference grid and suppressed
grid is greater. Algorithm 3 outlines the process by which a suppres-
sion action a is selected using localized rewards. Wildfire belief map
Bt is propagated to roll-out depth RO to attain propagated reference
grid Bt�RO. An internal wildfire propagation model possessing wind

Fig. 9 The localized suppressiondestructionminimization rewardmodel.Apropagated reference grid andpostsuppressionpropagationgrid are clipped
to attain local subarrays, which are then compared to determine action consequence.
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and elevation, but only limited fuel, data is used.While the quality of
the internal propagation model affects reward optimization, quality
resultsmay be attained for even a low-fidelitymodel. BeliefmapBt is
also submitted to one of three ASR functions with quantile selection
Q to attain a smaller action space set A. Each suppression action ai in
setA is then applied toBt, the results ofwhich are propagated to depth
RO to attain Bst�RO. A grid with size proportional to RO is centered
on action location (Xm, Ym), and corresponding subarrays L and Ls

are indexed from Bt�RO and Bst�RO respectively. The summed
instantaneous destruction in both subarrays is calculated and sub-
tracted from one another to attain reward RMi

.

Global resource destruction minimization, shown in Fig. 10,
allows for the direct comparison of any action taken across the global
grid following the appropriate propagation sequence. However, the
scope of destruction often causes the impact of the selected suppres-
sion activity to get lost amid the extent of the stochastic fire spread.
Algorithm 4 outlines the process by which a suppression action a
is selected using global rewards. Unlike the localized approach, the
global reward model does not initialize a single nonsuppressed, pro-
pagated reference grid at the onset. Instead, action roll-out rewards
are compared directly. The belief mapBt is again submitted to one of
three ASR functions with quantile selection Q to attain a smaller
action space set A. Each suppression action ai in set A is then applied
to Bt, the results of which are propagated to depth RO to attain
Bst�RO. The summed instantaneous destruction of Bst�RO, now
global rather than localized, is used to attain penalty PMi

.

Three ASRmethods are presented in Fig. 11. ASRmethod 1 limits
suppression actions to cells burning in the belief map; it can be
assumed that ideal suppression locations involve at least one burning
cell. ASR method 1 reduces the overall action space by 90–95%.
ASRmethod 2 restricts suppression to a predetermined percentage of

cells, here held at 5, 10, or 15%, that are furthest away from the fire
origin. ASR method 2 recognizes that suppressing the wildfire
exterior and wildfire head results in the greatest likelihood of mini-
mizing overall wildfire propagation. ASR method 2 reduces the
overall action space by 99%ormore.ASRmethod 2may bemodified
to increase the percentage of considered wildfire cells, the set of
which is then randomly selected. A stochastic wildfire does not
spread evenly, and consideration of cells to include those not furthest
away may better suppress multiple fire regions. ASR method 3
further restricts ASR method 2 to two 60 deg arcs, one centered on
the area of highest resource value and the other on the wildfire head.
Cells qualified by ASR method 2 that are also within the established
arcs qualify for suppression per ASR method 3. These arcs may shift
as environmental factors change throughout the simulation.
MCTSwith UCT is again applied to a generativeMDPmodel with

Algorithm 3 or Algorithm 4 used to determine action rewards. Each
MCTS suppression calculation is capped at 120 s of calculation time
to allow the suppression calculation to updated belief information
while also permitting time to execute the suppression action before
the next iteration.

D. Early Dispatch

The development of an intertwined surveillance-suppression
model enables the early allocation of additional suppression assets
in instances where wildfire growth exceeds even the optimized
capabilities of a single aircraft. Challenges include when to consider
requesting additional assets, and what thresholds should determine
that additional assets are required. The vast majority of initial attack
fires do not become escaped fires, and premature dispatching of
aircraft is therefore costly and wasteful. At the same time, initial
attack fires destined to become escaped fires have limitedwindows of
opportunity in which additional suppression can result in contain-
ment; after a certain point, the wildfire spread is too significant to be
reasonably contained except by a full-blown suppression operation.

Algorithm 3: [Simplified] Suppression planner
(localized destruction minimization reward model)

Input:Wildfire belief Bt, hyperparameter set fQ;ROg
Output: Suppression action a

1: Bt�RO ← propagate(Bt, RO)

2: A← ASR(Bt, Q)

3: Initialize Suppression action score map ~A← ∅
4: for action ai ∈ A do

5: where ai is �Xm; Ym;DR�
6: Bst ← suppress(Xm, Ym, DR, Bt)

7: Bst�RO ← propagate(Bst, RO)

8: Ls ← localize(Bst�RO, Xm, Ym)

9: L ← localize(Bt�RO, Xm, Ym)

10: RMi
= Σx∈LD�x� − Σx∈Ls

D�x�
11: ~A�ai� ← RMi

12: Recommended suppression action a ← argmaxai
~A�ai�

Fig. 10 The global suppressiondestructionminimization rewardmodel.Unlike in the localizedmodel, there is nopropagated reference grid. Thewildfire
belief map is suppressed, then propagated, and then compared across suppression actions.

Algorithm 4: [Simplified] Suppression planner
(global destruction minimization reward model)

Input:Wildfire belief Bt, hyperparameter set fQ;ROg
Output: Suppression action a

1: A ← ASR(Bt, Q)

2: Initialize Suppression action score map ~A ← ∅
3: for action ai ∈ A do

4: where ai is fXm; Ym;DRg
5: Bst ← suppress(Xm, Ym, DR, Bt)

6: Bst�RO ← propagate(Bst, RO)

7: PMi
← Σx∈Bst�RO

D�x�
8: ~A�ai� ← PMi

9: Recommended suppression action a ← argminai
~A�ai�
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A regression-backed approach is introduced in Algorithm 5, wherein
thewildfire ring radius at t � 120 min is predicted at each time step
T following suppression execution. If the predicted wildfire ring
radius exceeds a given time and ring threshold, then a second S-70
is dispatched to the scene to conduct suppression activities.

V. Experimentation

A. Environmental Models

1. Abstracted Case Studies

Three abstracted case studies are presented to simulate the intro-
duced hierarchical framework, surveillance and suppression reward
models, and MCTS extensions in various environmental conditions.
Cases 1, 2, and 3 are shown in Fig. 12. Case 1 involves flat terrain,
variable winds, and a single high-value resource area. Case 2 again
features flat terrain, has two high-value resource areas, but also
experiences a significant but randomized wind shift at t �
60 min . Case 3 has hilly to mountainous elevation, variable winds,
and three high-value resource areas. Each progressive case features
increased opportunity for destroyed resources.

2. Actual Wildfire Case Study

The state ofHawaii is particularly susceptible towildfires due to an
abundance of fire-prone grasses and shrubs and an increasinglywarm
and dry climate [45,46]. Roughly 0.5% of Hawaii’s total landmass
burns annually, a proportion greater than or roughly equal to that of

any other American state [47].We examine an initial attack fire in the
Makaha Valley on the island of Oahu on 19 October 2007, which
would go on to burn approximately 500 acres [48]. The 2007Makaha
Valley wildfire required 3 days, more than 60 firefighters, and 2
manned helicopters conducting water drops to contain. Although
wildfire perimeter data was not available, the initial wildfire location,
historical wind data, elevation map, and fuelbed characteristics were
aggregated to simulate and recreate the wildfire. Figure 13 shows
three photographs of the 19 October 2007 Makaha Valley fire [48],
along with a satellite photograph of the 10-acre grid where the
wildfire began [49], the associated LANDFIRE fuelbed map [36],
and historical wind directionality trends in the Makaha Valley [50].
Surface friction typical of mountainous environments such as the
Makaha Valley can result in reduced wind speeds.

B. Surveillance

1. Baseline

A myopic baseline is introduced in which unmanned aircraft are
jointly rewardedRo at time step t for the number of cells observed that
had a change in state compared to the belief map. Previous literature
typically restricts this reward to only newly identified burning
cells, as opposed to newly identified extinguished cells, to encourage
surveillance along the wildfire head. However, without an accurate
identification of the wildfire tail, suppression assets may be guided
to previously extinguished cells. Reward Ro may be weighted to
emphasize observations of higher-resource cells. Penalties Pu, Pm,
and Pi remain in effect.

Ro � τ1jfxjB�x� ≠ W�x�gj (12)

RU � Ro − Pu − Pm − Pi (13)

2. Hyperparameters

A three-dimensional grid search is conducted over a range of dis-
count factors, depths, and exploration constants to identify a high-
performing set of three hyperparameters for surveillance MCTS.
Table 1 shows all surveillance hyperparameters and considered values.
The model performs well when setting the discount factor to 0.95, the
depth of search to three, and the exploration constant to 100. The total
iteration limit is 1000, and the computation time limit is capped at 30 s.

ASR 1: Belief Only ASR 2: Wildfire Exterior ASR 3: Wildfire Sectors

High-Value Area

Wildfire Grid

Wildfire Origin

Considered for
Suppression

LEGEND

Fig. 11 Three action space restriction schemes: belief only, wildfire exterior, and wildfire sectors based on high-value areas and the wildfire head.

Algorithm 5: Early dispatch procedures

Input:Wildfire belief Bt, historical wildfire ring array R
Output: Early dispatch recommendation
1: if t mod dT � 0 then

2: Rt ← radius(Bt)

3: R�t� ←Rt

4: Rt�120 ← regression(R)

5: if (t > time threshold) and (Rt�120 > ring threshold) then

6: Recommend early dispatch
7: else
8: Recommend against early dispatch

CASE 1 3ESAC2ESAC

Fig. 12 Three abstracted environmental models featuring different terrain elevation maps, environmental wind profiles, and number and size of high-
value areas.
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The computational time limit must provide sufficient time for the
unmanned aircraft to act on the guidance received before reevaluation.

3. Simulation

Abstracted case study 1 was simulated 20 times with select hyper-
parameters to compare the myopic baseline against the uncertainty
reward model. Suppressive activities were not undertaken to help
isolate the effects of both policies without external interference. Two
surveillance accuracy metrics were considered: the accuracy of the

overall belief map relative to the actual wildfire state and the accuracy
of the burning cells in the beliefmap relative to the actualwildfire state.

C. Suppression

1. Baselines

Firefighting technique and immediate suppression baselines are

introduced for comparison against our approach. Firefighting tech-
nique reflects traditional firefighting policy and employs a conditions-
based, multistep approach to suppression. If resources are unevenly
distributed, wet lines are placed around high-value resource areas in an
order reflecting their proximity to thewildfire. Thereafter, each drop is
aimed at the head of the fire, defined as the distance furthest from the
fire origin. The drop selection is made based on the increased prox-
imity of the drop to the fire; for example, a north–south drop when
placing a wet line east or west of the fire. Immediate suppression is a

myopic policy that rewards actions that maximize the number of
wildfire cells extinguished by suppressive activity. MCTS with UCT
is applied to optimize immediate suppression policy results.

2. Hyperparameters

Three-dimensional grid searches are conducted to identify a
high-performing set of six hyperparameters for suppression MCTS.

We first simulate over discount factor, search depth, and exploration
constant, then over ASR selection, quantile, and roll-out depth.
Table 2 shows all suppression hyperparameters and considered val-
ues. The model performs well when setting search depth to two,
exploration constant to 100, ASR selection to two, quantile to 90, and
roll-out depth to 10.We note that a search depth of three outperforms
a search depth of two for the incipient stages of thewildfire. However,
the search depth of three falters precipitously as the action space
grows with the wildfire. Similarly, during the later stages of the
wildfire’s growth, a search depth of one outperforms a search depth
of two. This suggests an expanding action spacemay be supported by
progressively restricting the search depth or branching factor over the
lifetime of the model through the use of double progressivewidening
or similar [51]. The total iteration limit is 1000, and the computation
time limit is capped at 120 s. The computational time limit must
provide sufficient time for the manned aircraft to act on the guidance
received before reevaluation.

3. Simulation

Abstracted case study 1 was simulated 20 times with select hyper-
parameters to compare the immediate suppression baseline and fire-
fighting technique against our localized and global reward models.
Surveillance activities were not undertaken to help isolate the effects
of all policies without external interference; perfect information was
assumed by equating the belief map to the actual wildfire state. Three
suppression metrics were considered: total resources destroyed by
the wildfire, wildfire flame size (number of burning grid cells), and
average wildfire ring radius. Individual wildfires were then cate-
gorized as either fully suppressed, contained, or escaped. A fully

Fig. 13 Top three: photographs of the 19 October 2007Makaha Valley fire. From bottom left to bottom right: a satellite photograph of the 10-acre grid
where the wildfire began, the associated LANDFIRE fuelbed map, and historical wind directionality trends in the Makaha Valley.

Table 1 Surveillance planner hyperparameters
and considered values (selected values are in bold)

Hyperparameter Value, s

Computation time limit 30 s
Iteration limit 1000
Discount factor {0.80, 0.85, 0.90, 0.95, 0.99}
Depth {1, 2, 3, 4}
Exploration constant {10, 50, 100, 200, 1000}

Table 2 Suppression planner hyperparameters
and considered values (selected values in bold)

Hyperparameter Value, s

Computation time limit 120 s
Iteration limit 1000
Discount factor {0.80, 0.85, 0.90, 0.95, 0.99}
Depth {1, 2, 3}
Exploration constant {10, 50, 100, 200, 1000}
ASR selection f1; 2; 3g
Quantile f80; 90g
Roll-out depth f5; 10; 15g
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suppressed wildfire indicates that suppressive activities were able to
extinguish the entirety of the wildfire. A contained wildfire indicates
plateauing growth, defined as a wildfire ring size at t � 120 min
within 10%of the average of the last three (rapid, ultrarapid spread) or
four (moderate spread) wildfire ring size states.

D. Joint Surveillance and Suppression

1. Simulation

Abstracted case studies 1, 2, and 3 were simulated 20 times with
hyperparameters shown in Tables 1 and 2 to compare the immedi-
ate suppression baseline and firefighting technique against our
localized and global reward models, using imperfection wildfire
information attained using the uncertainty surveillance model.
Three suppression metrics were again considered: total resources
destroyed by the wildfire, wildfire flame size (number of burning
grid cells), and average wildfire ring radius.

E. Early Dispatch Procedures

Early dispatch windows are shown in gray in Fig. 14. Should the
predictedwildfire ring size at t � 120 min coincidewith thiswindow,
a secondary aircraft is dispatched to aid in suppressive activity. The
predictive accuracy for a case 1 model using linear regression is quite
good and stabilizes to within 10% of the final outcome around 20
minutes when there is no suppressive activity and within 40 minutes
when there is a single aircraft conducting suppression. In situations
involving wind shifts, irregular elevation profiles, or uneven fuel maps,
amachine-learningmodel may be integrated to better predict the extent
of the wildfire propagation. Figure 14 also provides insight into the
consequences of aircraft suppression across differing wildfire spreads.
Unsurprisingly, the less severe the wildfire spread, the greater the
impact of added suppressive activity. Perhaps more surprising is the
significant impact the additionof a second suppressive aircraft has onall
examined wildfires regardless of spread. This suggests a sort of sup-
pression resource “tipping point,” after which point wildfire con-
tainment is likely—assuming optimal use of resources.

VI. Results

A. Surveillance

1. Emergent Behaviors

Emergence occurs when unique and complex behaviors emerge

through the interaction of two or more otherwise simplistic entities.

The introduced surveillance planner and associated MCTS solver

result in unmanned aircraft exhibiting several emergent behaviors,

including dispersion, loitering, circling, and stacking, all shown in

Fig. 16. Dispersion occurs when both unmanned aircraft depart from

an area of interest to clear room for themanned aircraft, only to return

to their original positions immediately following the manned air-

craft’s departure. Loitering involves one unmanned aircraft avoiding

thewildfire entirely while the other maintains full freedom ofmaneu-

ver around the wildfire. Circling occurs when unmanned aircraft

follow one another in a circular pattern. Stacking involves two

unmanned aircraft in close lateral proximity with significant altitude

between them, such that one unmanned aircraft provides a high-level

view of the wildfire while the other provides a condensed low-level

view of the wildfire. These emergent behaviors regularly combine

with one another (such as circling and stacking), and are typically

more prevalent during certain stages of a wildfire’s propagation

(loitering typically occurs during the initial stages of a wildfire,

whereas circling and stacking occur during the latter stages).

2. Simulation Data

As demonstrated in Fig. 15, the uncertainly model increasingly

outperforms the belief baseline as the wildfire spread becomes

increasingly severe. The belief baseline performs well during the

early stages of wildfire response (20–40 min from inception) and

whenwildfire spread is slow.When thewildfire is small enough to be

local to either unmanned aircraft, querying the immediate vicinity is

all that is required, especiallywith a search depth of up to three.As the

wildfire expands beyond the reach of the search tree, weighting the

recency of past queries on a by-grid cell basis becomes beneficial.

The uncertainty model does this by maintaining surveillance recency

Fig. 14 Linear regression is used to predict wildfire ring size at t � 120 min for various case 1 wildfire spread rates with no, single-aircraft, and dual-
aircraft suppression applied.

Fig. 15 Surveillance accuracy of burning cells in % with 95% CI ranges for slow, moderate, rapid, and ultrarapid wildfire spread.
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data across the entire wildfire in a regularly updated uncertainty map.

Given that the uncertaintymodel rivals or exceeds the performance of

the belief baseline in each stage of wildfire propagation and across all
spread rates, the uncertainty model will be used exclusively for later

joint surveillance and suppression simulations.

B. Suppression

1. Policy Behavior

The three suppression policy categories under consideration each

uniquely prioritize different aspects of the wildfire, as evidenced by

their behavior in simulation. The comparison of firefighting tech-
niques against optimized destructionminimization policies, shown in

Fig. 17, indicates several commonalities, however. The destruction

minimization policies also place strategic wet lines, although not

with the expediency of the firefighting technique; they prefer to
immediately reduce the extent of the initial attack fire rather than

preemptively place wet lines alongside high-value areas. This extin-

guishes the fire in its infancy, when the greatest effect can be had

through suppression. Otherwise, the destruction minimization poli-

cies also prioritize the head and exterior of the fire. Destruction
minimization policies typically select wet lines that simultaneously

suppress at least some portion of thewildfire, rather than treating wet

lines and suppression as largely exclusive. The immediate suppres-

sion baseline is the most myopic of the three categories, as it discards
any consideration of future outcomes in favor of extinguishing the

greatest amount of wildfire in the present.

2. Simulation Data

As shown in Figs. 18 and 19 and in Table 3, localized and global

resource destruction minimization policies outperform the immedi-

ate baseline across all wildfire spreads and are likely to outperform

firefighting techniques in moderate and rapid wildfire spreads. Both

forms of resource destruction minimization appear to perform about

evenly. Resource destruction minimization suppression results vary

increasingly as the wildfire spread becomes increasingly severe; this

may be attributed to the unevenness between wildfires that are fully

suppressed and those that escape.

C. Joint Surveillance and Suppression

1. Simulation Data

Localized and global resource destruction minimization policies

outperformed the immediate baseline for moderate wildfire spreads

and are likely to outperform the immediate baseline for rapid and

ultrarapid wildfire spreads. Localized and global resource destruc-

tion minimization policies are also likely to outperform firefighting

techniques in moderate wildfire spreads and are on par for rapid

and ultrarapid wildfire spreads. Both forms of resource destruction

minimization continue to perform about evenly. Joint surveillance

and suppression results are depicted in the Appendix, in Table A1

and Figs. A1 and A2. Notably, imperfect as opposed to perfect

surveillance information has a significantly more detrimental effect

on the optimized policies as opposed to firefighting techniques.

Accurate wildfire data is required to fight the wildfire in a manner

Fig. 16 Unmanned aircraft exhibiting various forms of emergent behavior to include dispersion, loitering, stacking, and circling.
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that results in full suppression, whereas placing wet lines along
boundaries and high-value areas is more forgiving. These results
hold for cases 2, 3, and 4, despite the increase in environmental
complexity. It may be inferred that improving surveillance accuracy
is among the most effective ways to optimize suppression results.
Figure 20 analyzes the end-state of the propagated wildfires

postsuppression by bucketing them into one of three categories:
fully suppressed, contained, or escaped. Escaped fires represent
between 1 and 17% of all wildfires in the United States but result
in 97% of the overall burned landmass [52,53]. Escaped fire
containment requires a significant expansion in suppression
capability by firefighting agencies through the employment of
multiple ground and air assets. As shown, the percentage of
escaped wildfires in moderate, rapid, and ultrarapid wildfire
spreads all greatly exceed 1–17% when firefighting techniques
are applied. The firefighting technique resulted in containment in

5–15% of wildfire simulations across all spreads, outperforming
the immediate suppression baseline and no suppression whatsoever.
This indicates our focus on initial attack fires with the potential to
become escaped fires. For reference, the joint surveillance and
suppression framework with an optimized resource destruction min-
imization model applied results in a 100% full suppression rate when
the wildfire spread corresponds to an 83% full suppression rate using
firefighting techniques. Figure 20 also demonstrates the effectiveness
of resource destruction minimization models, with and without early
dispatch, relative to the immediate suppression baseline and fire-
fighting techniques. The only instances of fully suppressed wildfires
across all three wildfire spreads were when resource destruction
minimization models were applied. The moderate wildfire spread
chart does not feature an early dispatch variation of the destruction
minimization model due to the slow propagation sequence not
triggering the selected early dispatch window.

Fig. 18 A 20-run average comparison of suppression policy selection on resources destroyed over time with 95% CI ranges for moderate, rapid, and

ultrarapid wildfire spreads in case 1 given a perfect surveillance information assumption.

Fig. 17 Limitations of an overly proactive approach in firefighting technique compared to the strategically proactive approach in our destruction
minimization models.
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VII. Discussion

A. System Capability

The introduced hierarchical framework is designed to integrate

unmanned surveillance aircraft into existing initial attack opera-

tions with minimal disruption to participating manned aircraft.

It is therefore important to consider the assumptions that enable

this capability to function as intended. Those assumptions are

related to network architecture, autonomy modes in the case of

network degradation, free and stable communication, and ena-

bling hardware.

Table 3 Suppression performance (final destruction), case 1, 20 run average, 95% CI

Suppression method (perfect
information assumption) Moderate fire spread Rapid fire spread Ultrarapid fire spread

Baselines

Firefighting technique 600.40	 146.52 1100.18	 121.02 2120.49	 320.49

Immediate suppression 1223.14	 334.92 2687.47	 483.72 4107.61	 393.40

Our methods

Localized destruction minimization 122.66	55.57 760.37	275.75 1617.31	 532.71

Global destruction minimization 272.49	241.16 669.38	274.02 1910.78	 628.51

Bold indicates methods that outperform both baselines by a statistically significant margin (α � 0:05).

Fig. 20 A20-run comparisonof suppressionpolicy selection to include earlydispatchingonwildfire status category at t � 120 min formoderate, rapid,

and ultrarapid wildfire spreads in case 1 with imperfect surveillance information.

Fig. 19 A20-run comparison of suppression policy selection on resources destroyedat t � 120 min formoderate, rapid, andultrarapidwildfire spreads
in case 1 with a perfect surveillance information assumption.
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A MPOMDP, as opposed to a Dec-POMDP, has no impediment to
communication [30]—and yet no network is infallible. In our frame-
work, communication exists between unmanned aircraft, between
mannedaircraft, andbetweenunmanned andmannedaircraft.Although
there are several feasible approaches to aircraft network architecture,we
proposea dual-layer system.The low-level layer is a decentralizedmesh
network with self-healing properties where aircraft communicate their
location in real-time toother networked aircraft.This robust layer aids in
collision avoidance. The high-level layer is hierarchical and mirrors
the introduced framework. One unmanned aircraft is assigned to be
the unmanned network lead. This assignment may rotate such that the
unmanned aircraft most central to themesh, in terms of relative position
or strength of network connection, becomes the lead. The unmanned
network lead is responsible for 1) receiving and fusing observation data
across unmanned aircraft, 2) updating the wildfire belief map, 3)
resolving the surveillance planner using the updated wildfire belief
map, 4) disseminating surveillance guidance to unmanned aircraft,
and 5) disseminating the updated wildfire belief map to all aircraft. A
mannednetwork leadmaybe assigned if there aremultiple participating
manned aircraft. Alternatively, manned aircraft may independently
resolve their own suppression planners. This suits when one manned
aircraft is actively suppressing the fire while the other is replenishing
water off-station.
Human-autonomous frameworks typically traverse an autonomy

hierarchy in response to changes in the network and operating envi-
ronment. This has significant repercussions for system scalability and
robustness. While the ideal case assumes a shared wildfire belief map
and centralized decision-making within homogeneous agent groups,
this need not be true in our framework. Individual decision processes
can be resolved independently if the high-level network layer is
degraded. This highlights one advantage of dividing the larger
MPOMDP into smaller MDPs. Given lapses in communication with
the respective network lead, all aircraft can proceed, if suboptimally, to
the best of their independent ability and per their individualMDPs and
belief maps. If the network lead is damaged, another aircraft assumes
the network lead role. If a nonlead aircraft is damaged, the framework
continues to operate unabated, albeit with fewer observations or
suppression actions. Separately, it is critical that the low-level network
layer remain intact. An unmanned aircraft that disconnects from the
decentralized mesh network and is therefore no longer receiving
location information must depart the wildfire vicinity immediately or
risk collision. Given the inherent risks involved with manned aircraft
integration, we would expect additional fail-safe measures to mitigate
collision avoidance concerns during communication lapses.
The initial attack is limited to 10 acres, or a roughly 200-m-by-

200-m grid. This is small enough to ensure reliable communication
between aircraft using any one of a number of wireless protocols,
including WiFi or Bluetooth 5.0. The only exception occurs when the
suppression aircraft departs the wildfire to replenish its water bucket.
The nearest water replenishing source may be upward of 10 km away,
inwhich case there is limited communication betweenmanned aircraft
off-station and the unmanned network lead on-station. This results in
themanned aircraft possessing a stalewildfire belief map. Suppression
planner performance using the stale wildfire belief map is determined
by comparing the frequency of suppression to howquickly thewildfire
expands. In slowly and moderately propagating fires, optimizing
suppression on a belief map a few minutes old is still likely to provide
useful results. Alternatively, the suppression planner can resolve on the
condition that the manned aircraft receives an updated wildfire belief
map from the unmanned network lead while en-route back to the fire.
This ensures a more accurate wildfire belief at the time of suppression
planner execution but reduces the amount of time available for com-
putation. Satellite-based communication or the presence of a nearby
ground station can mitigate network reliability concerns.
The initial attack wildfire is constrained in time and is either

suppressed, contained, or becomes an escaped fire at the 120-min
mark. The vast majority of manned suppression aircraft can remain
airborne for at least 2 h. For example, the S-70 has 150 min of flight
time when filled with fuel. More limiting is the battery life for
unmanned aircraft, especially those with multirotors. There exist a
handful of higher-end electric and hybrid surveillance quadcopters

that have between 55 and 120 minutes of flight time, depending on
the payload. This flight time is expected to incrementally improve
with advancements in lithium batteries and composite materials. The
presence of recharge stations or the dispatch of a second fleet of
unmanned aircraft, can help maintain continuous surveillance oper-
ations over the course of an expanding, incipient wildfire.

B. Limitations and Future Work

The hierarchical framework introduced, while promising, is sub-
ject to certain limitations. These can generally be categorized as
model-specific, solver-specific, or domain-specific. From those lim-
itations, we identify opportunities for further analysis.

1. Model-Specific

MDPs are excellent tools for capturing the dynamics underpinning
and uncertainties affecting complex systems, though they are not
without limitations. MDPs are subject to the “curse of dimension-
ality,” meaning that they grow exponentially as the number of states
and actions increases [10]. Through a combination of wildfire-
specific constraints, probabilistic search algorithms, and the decom-
position of the MPOMDP into hierarchically arranged subproblems,
we overcame the high-dimensional state and action spaces associated
with the initial attack and attained significant andmeaningful results.
As the initial attack grows beyond the confines of its regulated
boundaries and becomes an escaped fire, we would expect the state
and suppression action spaces to swell. Additionally, if more aircraft
were introduced, surveillance and suppression action spaces would
exponentially enlarge. In both cases, the introduced constructs would
become less effective. Tomaintain a similar resolution for surveillance
and suppression operations for an escaped fire with an increase in the
number of participating aircraft, we suggest an added hierarchical
layer, now within homogeneous groupings in addition to just between
them.This transformsour hierarchy froman iterating series of planners
into an iterating series of subhierarchies. We leave a more extensive
review of the nested MDP hierarchy design and associated computa-
tional complexity for the escaped wildfire problem to future research.
A second model-specific limitation is surveillance planner frequency
and the merging of collision avoidance penalties and wildfire surveil-
lance rewards into one objective function. While the duration bet-
ween surveillance decisions can be easily modified, there needs to be
sufficient time between decisions to 1) apply the solver and get results
and 2) actually execute surveillance operations and attain observations.
This time scale may differ from that required for robust collision
avoidance, which is like to operate at a much higher frequency. In
application, the frequency of location sharing between aircraft would
be greater than that of observation sharing.We therefore suggest a low-
level “detect and avoid” system for each unmanned aircraft. The
surveillance planner introduced then effectively keeps unmanned air-
craft away from the expected manned aircraft axis of advance, while
the low-level detect and avoid system informed by location sharing
data adjusts for unexpected changes in manned aircraft trajectory.

2. Solver-Specific

MCTS is an online planning algorithm and therefore an effective
solver choice for the initial attack problem. MCTS can account
for nonstationary behavior in the initial attack wildfire. This includes
instantaneous changes in wildfire propagation direction and inten-
sity, as demonstrated with the randomized wind shift simulated in
abstracted case study two. Despite its upside, MCTS has certain
limitations that must be addressed. MCTS suffers from sample ineffi-
ciency in large search spaces, is prone to high variance and faces
domain-specific challenges related to its internal model. We address
state aggregation via nested hierarchical design in the model-specific
limitation section above, which can minimize an otherwise expansive
search tree and enable MCTS to obtain accurate statistics and make
informed decisions. MCTS roll-outs can vary significantly due to the
random nature of simulations. This may result in inconsistent action
value estimations and induce problematic noise. Parallelization, vari-
ance reduction, and progressive widening techniques can mitigate
these concerns. MCTS uses an internal model to conduct simulations,
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and solver performance is therefore a consequence of how well that
internal model reflects reality. This is not an issuewhenMCTS is used
for deterministic games, but becomes concerning when applied to
environments rife with uncertainty. The disparity between reality and
the internal model is exacerbated with depth. As such, a typical
disadvantage of model-based methods is that compounding errors
make long-horizon roll-outs unreliable. The depth considered during
surveillance planning is shallow enough to avoid these compounding
errors while still remaining useful due to the frequency of reevaluation.

3. Domain-Specific

Whilewe have sought to develop a high-fidelity initial attackmodel,
we have not so far addressed fire intensity and flame height, smoke
plumes, mixed fleet operations, and the ember attack. Unmanned air-
craft attain higher resolution observation data by descending, but doing
so may put them at risk of catching fire. Descending below an estab-
lished safety distance from the groundmay result in a penalty applied to
the violating aircraft’s objective function. A more tailored approach
involves modifying the safety distance as a function of flame intensity
or height for a given cell column.Wehave assumed abinarymappingof
the wildfire state, but we can reasonably include an assessment of both
flame intensity, given the appropriate sensors, and flame height using
three-dimensional wildfire propagation and observation models. Pham
et al. applya safety distance tounmanned aircraft tracking awildfire and
also introduce a flame intensity model as an artificial potential field
[13]. Smoke plumes obscure surveillance aircraft’s vision-based obser-
vations, induce significant errors in sensor measurements [54], and
modify manned suppression aircraft’s axis of advance. Smoke sensors
or low-cost cameras outfitted for unmanned aircraft may be used to
develop three-dimensional keep-out geofences [55] for smoke plumes.
We address agent heterogeneity by separating available assets into
homogeneousmanned and unmanned aircraft groups. The suppression
patterns and partial suppression probabilities in this paper are tailored to
a 660-gallon water bucket on a short line hauled by an S-70 Firehawk
helicopter. These patterns and probabilities may be adjusted for any

manned aircraft and water suppression platform. We would expect
fundamentally different results for a CH-47 Chinook hauling a 2600-
gallonwater bucket on a long line. As the initial attackwildfire escapes,
a variety of newmanned aircraft arrive on station, including fixed-wing
tankers, helicopters carrying various sizes ofwater buckets, and smoke-
jumper aircraft. The set of joint actions across the diversity of manned
aircraft may give rise to interesting emergent behaviors but must also
comply with Fire Traffic Area altitudes, orbits, and routing structures.
The set of considered neighboring cells during wildfire propagation
may be expanded to incorporate the spread of embers across sizable
distances in the case of an ember attack. An ember attack occurs when
wildfires in strong wind conditions carry embers beyond the fire front.
We focus on the general form of the initial attack and therefore consider
only adjacent neighbors during propagation. MDP models exist that
have incorporated airborne ember spread for larger wildfires [12].

VIII. Conclusions

The coordination of wildfire surveillance and suppression activities
using manned and unmanned aircraft in tandem is an effective means
of reducing wildfire propagation severity and minimizing wildfire
destruction. A hierarchical framework involving iterating surveillance
and suppression planners is introduced to divide an otherwise intrac-
table MPOMDP into optimizable subproblems acting on asynchro-
nous but otherwise consistent time scales. Surveillance, suppression,
and joint surveillance and suppression models with unique MCTS
extensions applied are compared in simulation across abstracted and
actual case studies. We demonstrate how a hierarchical approach to
Markov decision processes may be used to ensure collision avoidance
between unmanned and manned aircraft operating in close proximity
and how teaming aerospace operations may extend into wildfire
management. We further find that our hierarchical framework with a
resource destruction minimization reward model significantly outper-
forms firefighting techniques and a myopic baseline in preventing
initial attack fires from developing into escaped fires.

Appendix: Joint Wildfire Surveillance-Suppression Performance Across Policies

Table A1 Joint surveillance-suppression performance (final destruction), 20 run average, 95% CI

Case Suppression method Moderate Rapid Ultrarapid

Uncertainty surveillance model Fire spread Fire spread Fire spread
Baselines

Firefighting technique 663.16	 153.86 1416.30	 270.56 2504.41	 259.58

1 Immediate suppression 1247.83	 351.86 2523.71	 442.56 3909.05	 373.87

Our methods

Localized destruction minimization 444.48	 151.70 1455.15	 244.14 2727.90	 480.10

Global destruction minimization 348.12	133.91 1602.76	 390.03 2581.25	 305.61

Baselines

Firefighting technique 1050.80	 134.23 1586.44	 130.94 2515.49	 227.91

2 Immediate suppression 1552.63	 298.54 2653.19	 364.15 3354.86	 364.23

Our methods

Localized destruction minimization 417.43	209.84 1210.73	 489.17 2494.31	 610.34

Global destruction minimization 445.21	233.31 1549.57	 535.60 2581.25	 305.61

Baselines

Firefighting technique 1792.59	 382.81 2396.35	 465.55 3728.30	 441.38

3 Immediate suppression 1532.93	 592.88 4173.03	 677.81 6483.51	 665.34

Our methods

Localized destruction minimization 447.74	185.17 1493.11	532.93 4778.15	 892.61

Global destruction minimization 934.72	406.79 1753.15	 551.94 4145.07	 651.05

Baselines

Firefighting technique 1061.27	 90.40 2020.31	 131.77 3160.39	 165.56

4 Immediate suppression 690.67	 160.69 2010.83	 262.97 3690.32	 372.43

Our methods

Localized destruction minimization 288.61	113.47 1329.51	226.86 3290.26	 407.79

Global destruction minimization 434.65	143.71 1477.92	 321.53 2800.06	 332.47

Bold indicates methods that outperform both baselines by a statistically significant margin (α � 0:05).
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Fig. A1 A 20-run average comparison of suppression policy selection on resources destroyed over time with 95% CI ranges for moderate, rapid, and
ultrarapid wildfire spreads in all four cases with imperfect surveillance information.
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Fig. A2 A 20-run comparison of suppression policy selection on resources destroyed t � 120 min for moderate, rapid, and ultrarapid wildfire spreads
in all four cases with imperfect surveillance information.
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